
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 31: 747–765 (1999)

IMPLICIT WEIGHTED ESSENTIALLY
NON-OSCILLATORY SCHEMES FOR THE

INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

YIH-NAN CHENa, SHIH-CHANG YANGa AND JAW-YEN YANGb,*
a Department of Mechanical Engineering, National Taiwan Uni6ersity, Taipei, Taiwan, Republic of China

b Institute of Applied Mechanics, National Taiwan Uni6ersity, Taipei, Taiwan, Republic of China

SUMMARY

A class of lower–upper/approximate factorization (LUAF) implicit weighted essentially non-oscillatory
(ENO; WENO) schemes for solving the two-dimensional incompressible Navier–Stokes equations in a
generalized co-ordinate system is presented. The algorithm is based on the artificial compressibility
formulation, and symmetric Gauss–Seidel relaxation is used for computing steady state solutions while
symmetric successive overrelaxation is used for treating time-dependent flows. WENO spatial operators
are employed for inviscid fluxes and central differencing for viscous fluxes. Internal and external viscous
flow test problems are presented to verify the numerical schemes. The use of a WENO spatial operator
not only enhances the accuracy of solutions but also improves the convergence rate for the steady state
computation as compared with using the ENO counterpart. It is found that the present solutions
compare well with exact solutions, experimental data and other numerical results. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The design and construction of the weighted essentially non-oscillatory (WENO) schemes for
hyperbolic conservation laws are based on essentially non-oscillatory (ENO) schemes that were
first introduced by Harten et al. [1] in the form of cell averages. Later, to improve the
implementation of the method, Shu and Osher [2,3] devised a class of flux-based efficient ENO
schemes. The main concept of ENO schemes is to use the ‘smoothest’ stencil (in the asymptotic
sense) among several candidates to approximate the fluxes at cell boundaries to a high-order
accuracy, and at the same time, to avoid oscillations near discontinuities. ENO schemes are
uniformly high-order accurate right up to the shock and are very robust to use. However, they
also have certain drawbacks as Jiang and Shu [4] have pointed out. One problem is that the
freely adaptive stencil could change even by a round-off perturbation near zeroes of the
solution and its derivatives. This free adaptation of the stencil is also not necessary in regions
where the solution is smooth. The convergence rate for the implicit ENO scheme is generally
poor. Another problem is that ENO schemes are not effective on vector supercomputers
because the stencil-choosing step involves heavy usage of logical statement, which performs
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poorly on such machines. The WENO schemes proposed recently by Jiang and Shu [4] and
by Liu et al. [5] can overcome these drawbacks while keeping the robustness and high-order
accuracy of ENO schemes. The concept of WENO schemes is the following: instead of
approximating the numerical flux using only one of the candidate stencils, one uses a
convex combination of all the candidate stencils. Each of the candidate stencils is assigned
a weight which determines the contribution of this stencil to the final approximation of the
numerical flux. The weights are defined in such a way that, in smooth regions, it ap-
proaches certain optimal weights to achieve a higher order of accuracy, while in regions
near discontinuities, the stencils that contain the discontinuities are assigned a nearly zero
weight. Thus, ENO property is achieved by emulating ENO schemes around discontinuities
and a higher order of accuracy is obtained by emulating upstream central schemes with the
optimal weights away from the discontinuities. Both efficient ENO and WENO schemes
have been extensively tested and applied to the compressible Euler/Navier–Stokes equa-
tions.

The solution methodology for viscous incompressible flows is rather different from that
for compressible flows, due to the fact that there exists no time derivative in the continuity
equation for incompressible flows. In order to apply compressible flow solution algorithms
to incompressible flow problems, the continuity equation needs to be modified to couple
with the momentum equation so that the whole system of equations can be put into the
same formulation and solved efficiently. To achieve this goal, the artificial compressibility
may be introduced by adding the time derivative of pressure to the continuity equation, as
was first proposed by Chorin [6]. The modified continuity equation, together with the
unsteady momentum equations, yield a set of hyperbolic–parabolic type of time-dependent
system of equations. Thus, fast implicit schemes developed for compressible flows, such as
the approximate-factorization scheme by Beam and Warming [7], can be implemented.
Various applications that evolved from this artificial compressibility concept have been
reported for obtaining steady state solutions [8–14]. Merkle and Athavale [15] and Rogers
and Kwak [16,17] have reported successful computations using the pseudo-time iteration
approach for the time-dependent flow problems. Further developments of numerical meth-
ods for incompressible viscous flows can be found in the work by Anderson et al. [18] and
by Briley et al. [19].

In this paper, the WENO scheme of Jiang and Shu [4] is adopted and is extended to
solve the incompressible flow problems. An implicit code of the WENO scheme is devel-
oped for the artificial compressibility formulation of the two-dimensional incompressible
Navier–Stokes equations for both steady state and time-dependent flows. For the steady
state flow problems, the lower–upper symmetric-Gauss–Seidel (LU-SGS) implicit algorithm
[20] is adopted. This algorithm is not only unconditionally stable but also completely
vectorizable in any dimension. For the time-dependent flow problems, the lower–upper
symmetric successive overrelaxation (LU-SSOR) scheme [21] is employed. For saving CPU
time, the pseudo-time iteration approach was not used. Instead, the values of b have been
put in the range b]5 (i.e. the larger the b value, the minor the influence of the time
derivative term in the continuity equation becomes). The resulting schemes are applied to
compute several standard internal and external laminar flow problems, including driven
square cavity flow, flow over a backward-facing step, flow decayed by viscosity and flow
over a circular cylinder. It is found that the present solutions are in good agreement with
available experimental results, exact solutions and other numerical results.
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2. GOVERNING EQUATIONS

The Navier–Stokes equations in the integral conservation law form for an incompressible,
two-dimensional flow with artificial compressibility can be written as
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Fa ·dSa =0, (1)

where V is the volume of the arbitrary control volume, S is the area of the arbitrary control
surface and the direction of dSa is outward, Q is the vector form of the conservative variables
and Fa = (E−E6)ib + (F−F6)jb is the flux tensor. In a Cartesian co-ordinates system, Equation
(1) can be expressed as follows:

(Q
(t

+
((E−E6)
(x

+
((F−F6)
(y

=0, (2)

with

Q=Ã
Æ

È

p
u
6

Ã
Ç

É
, E=Ã

Æ

È

bu
u2+p

u6
Ã
Ç

É
, F=Ã

Æ

È

b6

6u
62+p

Ã
Ç

É
,

E6=Re−1Ã
Æ

È

0
2ux

uy+6x

Ã
Ç

É
, F6=Re−1Ã

Æ

È

0
6x+uy

26y

Ã
Ç

É
,

where b is the artificial compressibility parameter and Re=rV�L/m is the Reynolds number.
The Cartesian velocity components u and 6 are scaled with the freestream velocity V� and the
Cartesian co-ordinates x and y are normalized with the characteristic length L. The non-
dimensional pressure is defined as p= (P−P�)/rV�2 , and the dynamic viscosity m is assumed
to be constant.

Conventionally, Equation (2) is transformed into the generalized co-ordinates (j, h) as
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3. NUMERICAL METHOD

3.1. Spatial discretization

A semi-discrete finite volume method is used to ensure that the final converged solution is
independent of the integration procedure and to avoid metric singularity problems. The finite
volume method is based on the local flux balance of each mesh cell. The semi-discrete form of
Equation (3) can be written as

(Q.
(t

= −
1

Vi, j

{[(E0 −E0 6)S]i+1/2, j− [(E0 −E0 6)S]i−1/2, j}

−
1

Vi, j

{[(F0 −F0 6)S]i, j+1/2− [(F0 −F0 6)S]i, j−1/2}, (4)

where (i, j ) is the (i, j )th computational cell with volume Vi,j and S is the area of each control
surface and the direction is outward. The spatial differencing adopts fifth-order-accurate
(r=3) WENO scheme (WENO3) [4] for the inviscid convective fluxes (E. , F. ) and fourth-order
central differencing for the viscous fluxes (E. 6, F. 6).

When adopting the WENO3 scheme, the physical fluxes (say F. ) are split locally into positive
and negative parts as

F. (Q. )=F. +(Q. )+F. −(Q. ), (5)

where (F. +/(Q. ]0 and (F. −/(Q. 50. There are several flux splitting methods that can be
chosen. In this paper, the local Lax–Friedrichs flux splitting method is used
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where �L�=diag(�l1�, �l2�, �l3�) and l1, l2 and l3 are the local eigenvalues. For easy understand-
ing, consider first the one-dimensional scalar conservation laws. For example,

ut+ f(u)x=0. (7)

Let us discretize the space into uniform intervals of size Dx and denote xj= jDx. Various
quantities at xj will be identified by the subscript j. The spatial operator of the WENO3 scheme
that approximates − f(u)x at xj will take the conservative form
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where f0 j+1/2 and f0 j−1/2 are the numerical fluxes. If the numerical fluxes obtained from the
positive and negative parts of f(u) are designated f0 j+1/2
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− respectively, then we have
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Here we first describe the approximation of the numerical flux f0 j+1/2 in one-dimensional
scalar conservation law. The WENO3 numerical flux for the positive part of f(u) is

f0 j+1/2
+ =v0

+�2
6

f j−2
+ −

7
6

f j−1
+ +

11
6

f j
+�

+v1
+�−

1
6

f j−1
+ +

5
6

f j
+ +

2
6

f j+1
+ �

+v2
+�2

6
f j
+ +

5
6

f j+1
+ −

1
6

f j+2
+ �

, (10)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 747–765 (1999)



2D INCOMPRESSIBLE NAVIER–STOKES EQUATIONS 751
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Similarly, the WENO3 numerical flux for the negative part of f(u) is
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Next the system of two-dimensional incompressible Navier–Stokes equations is considered,
where the numerical flux F0 j+1/2 is usually approximated in the local characteristic fields. Let
the Jacobian matrices A. and B. (A. =(E. /(Q. , B. =(F. /(Q. ) be represented by the following:
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where A. i=A. , B. for i=1, 2 respectively and

U=kxu+ky6,

kx= (ji)x, i=1, 2,
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ji= (j or h) for (A. or B. ).

A similarity transform for the Jacobian matrix is introduced by
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where c is the scaled artificial speed of sound given by
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Now, we denote the sth right and left eigenvectors of Aj+1/2 (the average Jacobian at xj+1/2)
by rs (column vector) and ls (row vector) respectively. Then the scalar WENO3 scheme can be
applied to each of the characteristic fields, i.e.

F( j+1/2,s= %
2

k=0

vk,sqk(ls ·F. j+k−2, . . . , ls ·F. j+k), (18)

which gives the numerical flux in the sth characteristic field. Here, vk,s (k=0, 1, 2) are the
weights in the sth characteristic field,

vk,s=vk(ls ·F. j−2, . . . , ls ·F. j+2), (19)

which is a non-linear function, and qk are the stencils as in Equations (10) and (11). The
numerical fluxes obtained in each characteristic field can be projected back to the physical
space by (here only the two-dimensional case is described)

F0 j+1/2= %
3

s=1

F( j+1/2,srs. (20)
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3.2. Time discretization

The lower–upper (LU) factored implicit scheme that was developed by Jameson and Yoon
[22] is unconditionally stable in any number of space dimensions. In the framework of the LU
implicit scheme, the flux vectors can be linearized by setting

E. n+1=E. n+A. nDQ. +O(DQ. 2),

F. n+1=F. n+B. nDQ. +O(DQ. 2),

E. 6n+1=E. 6n+A. 6nDQ. +O(DQ. 2),

F. 6n+1=F. 6n+B6nDQ. +O(DQ. 2),

where, n is the time level; A. , B. , A. 6 and B. 6 are the Jacobian matrices of the inviscid fluxes
E. , F. and the viscous fluxes E. 6, F. 6 respectively; and DQ. =Q. n+1−Q. n is the increment or
correction of conservative variables.

The inviscid Jacobians (A. i=A. , B. for i=1, 2 respectively) can be split according to the sign
of eigenvalues,

A. i=A. i
+ +A. i

− =RiLi
+Ri

−1+RiLi
−Ri

−1. (21)

Here Li
+ is formed by the non-negative part of the Li matrix and Li

− by the non-positive part.
An unfactored implicit scheme can be obtained by substituting the above relations into

Equation (4) and dropping terms of second- and higher-orders. This results in the governing
equation in diagonally dominant form

Vi, j

Dt
IDQ. i, j+a{[(A. + −A. 6)S]i+1/2, jDQ. i, j− [(A. + −A. 6)S]i−1/2, jDQ. i−1, j

+ [(A. − +A. 6)S]i+1/2, jDQ. i+1, j− [(A. − +A. 6)S]i−1/2, jDQ. i, j+ [(B. + −B. 6)S]i, j+1/2DQ. i, j

− [(B. + −B. 6)S]i, j−1/2DQ. i, j−1+ [(B. − +B. 6)S]i, j+1/2DQ. i, j+1−[(B. − +B. 6)S]i, j−1/2DQ. i, j}n

=−{[(E. −E. 6)S]i+1/2, j− [(E. −E. 6)S]i−1/2, j}n−{[(F. −F. 6)S]i, j+1/2− [(F. −F. 6)S]i, j−1/2}n

RHS, (22)

where I is the identity matrix. For a=1
2, the scheme is second-order-accurate in time. For

a=1, the time accuracy drops to first-order.
The implicit viscous Jacobian is also considered here to enhance the convergence rate,

especially for high-Reynolds number flows in which high aspect ratio grids near the walls are
used to resolve the boundary layer.

In order to maximize the efficiency, Jacobian matrices of the flux vectors are approximately
constructed to give diagonal dominance. A. +, A. −, B. + and B. − are constructed so that the
eigenvalues of ‘+ ’ matrices are non-negative and those of ‘− ’ matrices are non-positive, i.e.

A. i
9=

1
2

[A. i9rA. i
I], (23)

with the spectral radius of Jacobians

rA. i
=k max[�l(A. i)�], (24)

where l(A. i) represent eigenvalues of the Jacobian matrix A. i and k is a constant that is greater
than or equal to 1 to ensure the splitting of flux Jacobians is diagonally dominant.
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Equation (22) can be simplified if all of the Jacobians that should be evaluated at the
indicated cell faces are calculated at the local cell centers, and this can be achieved if two-point
one-sided differences are used. In addition, if it is assumed that the adjacent cell faces on the
diagonal are approximately equal, say in i-direction,

Si+1/2, j#Si−1/2, j=SI=0.5(Si+1/2, j+Si−1/2, j), (25)

and recognize that

A. + −A. − =rA. , (26)

and replace all viscous Jacobians with their spectral radius approximation then

A. 6#rA. 6
=

nSI

V
I. (27)

The unfactored implicit scheme, Equation (22), produces a large block banded matrix that
is very costly to invert and requires large amounts of storage. This difficulty can be solved by
adopting the LU factored implicit scheme. In this paper, the LU symmetric successive
overrelaxation (LU-SSOR) scheme of Yoon and Jameson [21] is adopted to solve the unsteady
flow problems. The LU-SSOR implicit factorization scheme has the advantages of LU
factorization and SSOR relaxation. Using the above relations, the LU-SSOR scheme can be
written as

[LN−1U]nDQ. =RHSn, (28)

where

L=
Vi, j

Dt
I+a{[(rA. +2rA. 6

)SI+ (rB. +2rB. 6
)SJ ]i, j

− [(A. + +rA. 6
)i−1, jSi−1/2, j+ (B. + +rB. 6

)i, j−1Si, j−1/2]},

N=
Vi, j

Dt
I+a [(rA. +2rA. 6

)SI+ (rB. +2rB. 6
)SJ ]i, j, (29)

U=
Vi, j

Dt
I+a{[(rA. +2rA. 6

)SI+ (rB. +2rB. 6
)SJ ]i, j

+ [(A. − −rA. 6
)i+1, jSi+1/2, j+ (B. − −rB. 6

)i, j+1Si, j+1/2]}.

By setting a=1, the scheme reduces to a Newton iteration in the limit Dt��. Then,
Equation (29) reduces to

L= [(rA. +2rA. 6
)SI+ (rB. +2rB. 6

)SJ ]i, j

− [(A. + +rA. 6
)i−1, jSi−1/2, j+ (B. + +rB. 6

)i, j−1Si, j−1/2],

N= [(rA. +2rA. 6
)SI+ (rB. +2rB. 6

)SJ ]i, j, (30)

U= [(rA. +2rA. 6
)SI+ (rB. +2rB. 6

)SJ ]i, j

+ [(A. − −rA. 6
)i+1, jSi+1/2, j+ (B. − −rB. 6

)i, j+1Si, j+1/2].

It is interesting to note that the present implicit algorithm (LU-SGS) eliminates the need for
block inversions and is completely vectorizable on i+ j=constant oblique planes of sweep.
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3.3. Boundary conditions

The boundary conditions imposed on the solid surface are the no-slip condition for viscous
flows and the tangency condition for inviscid flows. A zero normal pressure gradient on the
wall is applied. In the far-field, a locally one-dimensional characteristic-type of boundary
condition is used. The procedures employed here are similar to those usually used for the
compressible flows. The Riemann invariants for this system of equations are now given by

R9=p+
1
2

un
29

1
2

[unc+b ln(un+c)], (31)

where un is the component of the velocity normal to the boundary. In all calculations, the
above boundary conditions are treated explicitly.

4. RESULTS AND DISCUSSION

Presented in this section are the results of four different laminar flow computations. For the
steady cases, these are driven cavity flow and flow over a backward-facing step. For the
unsteady cases, these are flow decayed by viscosity and flow over a circular cylinder.

4.1. Dri6en ca6ity flow

The first problem considered here is the two-dimensional lid-driven square cavity flow,
which has been adopted as a benchmark for code validation of two-dimensional incompress-
ible Navier–Stokes equations for decades.

The flow fields with Reynolds number 100, 400, 1000 and 3200 have been calculated using
a 65×65 grid system that is clustered near walls. Figure 1 shows the geometry and the
boundary conditions for the flow in a driven cavity. In Figure 2, the computed u velocity along
vertical lines and 6 velocity along horizontal lines through the geometric center are shown, and
numerical solutions by Ghia et al. [23] using a 129×129 uniform fine grid system are also
given for comparison. Excellent agreement can be observed, even with the current coarse grid.

Figure 1. The geometry and boundary conditions for the driven square cavity flow.
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Figure 2. (a) u velocity component along vertical centerline, (b) 6 velocity component along horizontal centerline for
the cavity flow.

Figure 3. Streamline patterns for the cavity flow.

Figure 3 shows the streamline patterns for Re=100 and 3200. It can be seen that the center
of the primary vortex is offset towards the top right corner at Re=100. It moves towards the
geometric center of the cavity with increasing Reynolds number. The solutions of the present
scheme show very good agreement with the benchmark solutions obtained by Ghia et al. [23].

The effect of various artificial compressibility parameters, b, on the convergence history is
shown in Figure 4. The parameter b is a measure for the amount of artificial compressibility.
For very large b, the modified governing equations resemble the Navier–Stokes equations for
truly incompressible flow. In Figure 4, as b is increased, the governing equations become more
stiff and the convergence rate becomes slow. As b is decreased, the convergence rate is better.
However, for very small b, the upstream influence of a local pressure disturbance is nearly lost,
which could cause numerical divergence (e.g. b=0.1). In general, for steady state flow

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 747–765 (1999)
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problems, b is set to unity. When a steady state solution is approached, the effect of artificial
compressibility diminishes, resulting in an incompressible solution.

Figure 5 shows the convergence rates of the ENO scheme (r=2) [24] and the WENO
scheme (r=3) for the cavity flow at Re=100 and b=1. The convergence rate of the WENO
is obviously more superior to that of the ENO scheme.

4.2. Flow o6er a backward-facing step

Next we consider the flow over a backward-facing step. The geometry and boundary
conditions for this flow are shown in Figure 6. A parabolic velocity profile is prescribed at the
inlet, whereas Neumann-type conditions (zero normal derivatives for both velocity compo-
nents) are imposed at the outlet of the computational domain. All the results presented are

Figure 4. The effect of artificial compressibility parameters b on the convergence history.

Figure 5. The convergence rate of ENO and WENO schemes for the cavity flow at Reynolds number 100 and b=1.
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Figure 6. The geometry and boundary conditions for the flow over a backward-facing step.

Figure 7. Reattachment length as a function of Reynolds number.

obtained using 101×101 grid points and the downstream boundary was located at 30 step
heights, as in Kim and Moin [25].

In Figure 7, numerical results for different Reynolds numbers are shown and compared with
the experimental and computational results of Armaly et al. [26] and the computational results
of Orlandi [27] and of Kim and Moin [25]. The present calculation shows good agreement with
experimental results up to Re=400. At this Reynolds number the corresponding velocity
vectors and streamlines are shown in Figure 8. As the Reynolds number become larger than
400, the computed results start to deviate from the experimental values. As Armaly et al. [26]
have pointed out, the difference is due to the three-dimensionality of the experimental flow at
this Reynolds number. In comparison with the numerical results of Armaly et al. [26] (using
the TEACH code), Orlandi [27] (using the vorticity–velocity formulation) and Kim and Moin
(using the fractional step method), the present results show a much higher reattachment length
than those of Armaly et al. [26] and Orlandi [27], and is approximately the same as that of Kim
and Moin.
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Figure 8. The velocity vectors and streamlines for the backward-facing step flow at Re=400.

4.3. Flow decayed by 6iscosity

This example is chosen to check the implicit fifth-order accuracy of WENO schemes
(WENO3) for the unsteady smooth solutions. The initial condition is taken as

u(x, y, 0)= −cos(x) sin(y),

6(x, y, 0)=sin(x) cos(y), (32)

which was used in Reference [28]. The exact solution for this case is known

u(x, y, t)= −cos(x) sin(y) e−2mt,

6(x, y, t)=sin(x) cos(y) e−2mt. (33)

In the present paper, m is taken as 0.05 (i.e. the corresponding Reynolds number is 20) and
the computational domain is defined on the box [0, 2p ]× [0, 2p ] with periodic boundary
conditions in both directions. Since the u velocity along vertical lines and the 6 velocity along
horizontal lines through the geometric center are symmetric and have the same maximum
amplitude, we take the maximum velocity and define a percentage error as

Percentage error=
)uexact−ucalculated

uexact

)
×100%.

Table I shows the calculated percentage errors for different artificial compressibility parame-
ters b and grid systems. Since each case is calculated with the same CFL number, this implies
that the calculating time steps are increased as b is increased. For the consideration of both
accuracy and CPU time, the current recommended range of b values for unsteady flow
problems is 55b5100. Figures 9 and 10 show the comparison of the calculated u velocity
along vertical lines and the 6 velocity along horizontal lines through the geometric center with
exact solutions. The calculated results (b=10) are in very good agreement with exact

Table I. The percentage error of maximum velocity at t=10

1 5b 10 100 1000

0.655% 0.233% 0.206%Grid: 65×65 5.463% 1.443%
0.533% 0.038% 0.112%Grid: 129×129 5.211% 1.220%
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Figure 9. The u velocity component along vertical centerline and the 6 velocity component along horizontal centerline
for the flow decayed by viscosity at 129×129 grid points.

Figure 10. The u velocity component along vertical centerline and the 6 velocity component along horizontal
centerline for the flow decayed by viscosity at 65×65 grid points.

solutions. In this case, without using the pseudo-time iteration approach, one can predict the
time-dependent flow problem very well.

4.4. Flow o6er a circular cylinder

The two-dimensional flow over a circular cylinder is solved as an example of an external
flow over a bluff body with a complicated flow field that strongly depends on the Reynolds
number. For 6BReB40, a steady state exists with a pair of symmetric separation bubbles on
the leeward side. At higher Reynolds numbers the flow field is inherently unsteady and is
characterized by vortex shedding.

In this paper, the flow over a circular cylinder was computed for Reynolds number Re=40
and Re=200 (based on the diameter). No-slip boundary conditions were specified on the
cylinder and characteristic boundary conditions were used to treat the far-field.
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For the case of Re=40, an O-grid system of 181×65, with the first grid spacing of 0.005
diameters and stretching to the outer boundary with 20 diameters, is taken. Three values of b

(5, 10 and 50) under this grid system were tested. In this case the time step is determined by
CFL=0.5 for each different Reynolds number. In Figure 11, the time evolution of the
separation length (measured from the rear of the cylinder and normalized by the diameter) for
three different values of b are compared with the experimental results of Coutanceau and
Bouard [29]. The results show good agreement with the experimental data. The corresponding
streamlines for b=10 (it seems to give the best agreement with the experimental results) are
shown in Figure 12.

For the case of Re=200, an O–H-grid system of 91×65 O-grids, with the first grid spacing
of 0.005 diameters and stretching to the outer boundary with 5 diameters, combining with a
121×39 H-grid extended 15 diameters to the downstream is taken. The grid system is shown
in Figure 13. This case was done having b=10 and CFL=0.8 (the corresponding time step
is approximately 0.001) under the grid system. The lift and drag coefficients are plotted versus
time in Figure 14. A comparison of the calculated results of the present work with the
experimental results (Wille [30] and Roshko [31]) and other calculations (Rogers and Kwak
[32], Rosenfeld et al. [33] and Lecointe and Piquet [34]) is listed in Table II. The lift and drag
coefficients for the periodic state and the corresponding Strouhal number appear to be quite
consistent with the experimental results. In Figure 15, the streamlines at various stages during
one period are plotted. The first plot shows the flow when the drag is at a minimum and the
lift is zero. The second plot shows that the flow has a maximum in drag and lift. The next two
plots correspond to another minimum in drag with zero lift, and a maximum in drag with a

Figure 11. Time evolution of separation length for flow over a circular cylinder at Re=40.

Figure 12. The streamlines for flow over a circular cylinder at Re=40.
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Figure 13. The computational grid system for flow over a circular cylinder at Re=200.

Figure 14. Lift and drag coefficients vs. time for flow over a circular cylinder at Re=200.

Table II. Lift and drag coefficients and Strouhal numbers for circular cylinder
flow at Re=200

CL StCD

90.72 0.197Present 1.3390.04

0.16090.751.2990.05third-orderRogers and Kwak [32]
0.185fifth-order 1.2390.05 90.65
0.201Rosenfeld et al. [33] 1.4090.04 90.70

1.4690.04 0.22790.70second-orderLecointe and Piquet [34]
0.194fourth-order 1.5890.0035 90.50

Wille (experimental) [30] 1.3
0.19Roshko (experimental) [31]

minimum in lift respectively. These two are mirror images of the first two plots. Finally, the
last plot is identical to the first one, and the period for this flow is 5.072 (i.e. the corresponding
Strouhal number is 0.197). To show the vortex shedding phenomenon, the pressure contours
and streamlines covering the whole computational domain are shown in Figure 16.
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Figure 15. Streamlines for flow over a circular cylinder at Re=200 at various times during the vortex shedding cycle.
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Figure 16. (a) Pressure contours and (b) streamlines for flow over a circular cylinder at Re=200.

5. CONCLUSIONS

An accurate and efficient incompressible Navier–Stokes code based on the artificial compress-
ibility formulation of Chorin [6] has been developed. This code uses the implicit LU-SGS [20]
and LU-SSOR [21] time stepping and extends the WENO spatial operator of Jiang and Shu
[4] to the case of incompressible flows. Applications to several two-dimensional steady and
unsteady viscous incompressible flow problems have been carried out to validate and illustrate
the code. For steady flow problems, the lid-driven cavity flow and flow over a backward-facing
step, the LU-SGS implicit algorithm is used. For time-dependent flow problems, flow decayed
by viscosity and flow over a circular cylinder, the LU-SSOR scheme is employed. The use of
the WENO spatial operator for the inviscid fluxes not only enhances the accuracy but also
improves the convergence rate for the steady state computation as compared with using the
ENO counterpart. It is found that the solutions of the present algorithm compare well with
exact solutions, experimental data and other numerical results. Extending the present method
to three space dimensions can be done and is currently being developed.
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